
Applied Energy 184 (2016) 605–618
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier .com/locate /apenergy
Optimal energy-efficient predictive controllers in automotive air-
conditioning/refrigeration systems
http://dx.doi.org/10.1016/j.apenergy.2016.09.086
0306-2619/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: y269huan@uwaterloo.ca (Y. Huang), a.khajepour@uwaterloo.

ca (A. Khajepour), fbagheri@sfu.ca (F. Bagheri), mbahrami@sfu.ca (M. Bahrami).
Yanjun Huang a,⇑, Amir Khajepour a, Farshid Bagheri b, Majid Bahrami b

aDepartment of Mechanical and Mechatronics Engineering, University of Waterloo, Ontario N2L3G1, Canada
b School of Mechatronic System Engineering, Simon Fraser University, Surry, BC V3T 0A3, Canada

h i g h l i g h t s

� A discrete MPC is designed for the A/C-R system with a three-speed compressor.
� The control performance is studied under both normal and frosting conditions.
� Two designed hybrid controllers are more efficient under any heating load condition.
� A continuous MPC is made for the A/C-R system with continuously varying components.
� The controllers bring better performance and save up to 23% energy for A/C-R systems.
a r t i c l e i n f o

Article history:
Received 10 August 2016
Received in revised form 14 September
2016
Accepted 26 September 2016
Available online 10 November 2016

Keywords:
Air-conditioning/refrigeration systems
Frosting
Discrete MPC
Robust MPC
Hybrid controller
a b s t r a c t

This paper presents several robust model predictive controllers that improve the temperature perfor-
mance and minimize energy consumption in an automotive air-conditioning/refrigeration (A/C-R) system
with a three-speed and continuously-varying compressor. First, a simplified control-oriented model of
the A/C-R system is briefly introduced. Accordingly, a discrete Model Predictive Controller (MPC) is
designed based on the proposed model for an A/C-R system with a three-speed compressor. A proper ter-
minal weight is chosen to guarantee its robustness under both regular and frost conditions. A case study
is conducted under various heating load conditions. Two hybrid controllers are made, which combine the
advantages of both the on/off controller and discrete MPC such that they will be more efficient under any
ambient heating condition. In addition, a continuous MPC is developed for systems with continuous vari-
able components. Finally, the experimental and simulation results of the new controllers and the conven-
tional on/off controller are provided and compared to show that the proposed controllers can save up to
23% more energy.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The continuously increasing demands on energy conservation
and environmental protection have driven researchers to develop
more efficient and ‘‘green” vehicles [1,2]. Recently, A/C-R systems
have been widely used as the main auxiliary devices in vehicles.
For example, A/C-R systems in food delivery trucks consume up
to 25% of the vehicle’s total fuel consumption. Efficiently operating
A/C-R systems can significantly improve operating costs and the
vehicle’s effects on the environment [3,4]. Thus, making more
efficient auxiliary devices such as A/C-R systems can bring many
benefits to vehicle owners as well as the environment [5]. For
any A/C-R system, a foremost step in achieving better performance
and higher energy efficiency is a proper control strategy. However,
in most conventional vehicles, the compressor speed is propor-
tional to the engine speed instead of actively varying with the
requirements of passengers or working conditions. This impedes
the development of advanced controllers for A/C-R systems given
that the controllers are usually applied to manipulate the speeds
of the compressor and fans of heat exchangers. Recently, the
onboard energy storage system (ESS) of anti-idling systems [6],
hybrid electric vehicles (HEVs) [7] and electric vehicles (EV) [8,9]
is capable of powering the A/C-R system independently such that
the A/C-R system can be disconnected from the engines [10]. This
indicates the feasibility of the electrification of the A/C-R system
and the subsequent application of advanced controllers in vehicles.
For the sake of accurate prediction, an accurate yet simple dynamic
model of the whole A/C-R system is a prerequisite for the design of
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Nomenclature

Av opening area of expansion valve
AcðAeÞ cross-sectional area of condenser (evaporator) tube
AocðAoeÞ exterior area of the condenser (evaporator)
aicðaieÞ equivalent refrigerant-side heat transfer coefficient in

two-phase region
aocðaoeÞ air-side heat transfer coefficient
aicshðaieshÞ refrigerant-side heat transfer coefficient in superheat

region
Cp specific heat of the heat exchangers
Cv discharge coefficient of expansion valve
Cair specific heat of the ambient air
DicðDieÞ heat exchanger tube internal diameter
hgeðhgcÞ enthalpy of vapor refrigerant
hicðhieÞ enthalpy of refrigerant at the inlet of heat exchanger
his isentropic of refrigerant in compressor
hlcðhleÞ enthalpy of liquid refrigerant
hlgcðhlgeÞ latent enthalpy of refrigerant
hoc enthalpy at the outlet of condenser
lcðleÞ length of two-phase section in two heat exchangers
_mv refrigerant mass flow rate through the expansion valve
_mcomp refrigerant mass flow rate through the compressor
mpipe total refrigerant mass in the pipes
m heat exchanger total mass
Ncomp compressor speed

Ncond condenser fan control input
Nevap evaporator fan control input
PcðPeÞ pressure of two heat exchangers
qv density of refrigerant through the valve
qref density of refrigerant
qlcðqleÞ density of liquid refrigerant
qgcðqgeÞ density of vapor refrigerant
qshcðqsheÞ density of refrigerant in superheat section
Tamb ambient temperature
TwfcðTwfeÞ equivalent temperature of tube wall & fin
TrcðTreÞ saturation temperature of refrigerant
TacðTaeÞ air temperature around the heat exchanger
Tsh superheat
Tic refrigerant temperature at the inlet of condenser
Tc argo temperature of cargo
Tc argo init initial temperature of cargo
Vd volumetric displacement of compressor
gvol volumetric efficiency of compressor
ga adiabatic efficiency of compressor
�ccð�ceÞ mean void fraction of two-phase section
N prediction and control horizontal length
P;Q ; S weight factor
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any advanced controller. A simplified control-based model for all-
purpose A/C-R systems that is validated by experimental data is
provided [11]. Further based on the model, the controllers’ devel-
opment process is presented and followed by experimental valida-
tion and comparison work.

A literature review on the existing controllers including the
MPC of A/C-R systems and the novelties of this paper is presented
in the second section; next, the simplified model is briefly intro-
duced. A brief introduction of the experimental system is provided
in the following section. In addition, the development and imple-
mentation process of controllers are elaborated upon. Further-
more, the experimental results of both the discrete MPC and the
conventional on/off controller are provided to demonstrate the
energy-saving ability and the robustness of the proposed MPC.
Moreover, a case study under varying heating load conditions is
conducted by proposing the hybrid MPCs and the continuous
MPC. In the last section, comments and future work are discussed.
Fig. 1. Schematic diagram of an automotive A/C-R system with cargo.
2. Literature review

The A/C-R system generally consists of four main components:
the compressor, evaporator, expansion valve, and the condenser, as
shown in Fig. 1. One cycle is taken as an example for the demon-
stration of the whole working process of the A/C-R system. Let us
begin with the high-pressure and low-temperature liquid refriger-
ant after it exits the condenser. It stays in the liquid phase before
entering the expansion valve. Since the valve is usually assumed
to be adiabatic, the enthalpy of the refrigerant at the inlet and out-
let of the valve should be equal. In the evaporator, the low temper-
ature and low-pressure two-phase refrigerant absorbs heat from
the cargo space and exits from the superheat (SH) section in gas
form to avoid damaging the compressor. The gas refrigerant is
pressed when going through the compressor and exits the com-
pressor with high temperature and high pressure. Finally, when
it reaches the condenser, the superheated and over pressured gas
refrigerant will go through the SH, two-phase and subcooling
(SC) section when flowing through the condenser. Due to the
extensive applications of A/C-R systems in different areas, many
controllers have been developed in the literature.

Thanks to its simplicity, the on/off controller was initially
applied. It could maintain the required temperature in a certain
range by turning the whole system on or off. Instead, the on/off
controller has many limitations. First, it is unable to regulate the
temperature oscillation amplitudes in changing conditions includ-
ing changing ambient temperatures or varying food temperatures.
Secondly, frequent compressor activations (turning it on/off) can
lead to excessive power consumption and cause the mechanical
components to wear down over time. Above all, energy efficiency
is not considered at all, and that is why [12,13] improved the orig-
inal on/off controller’s efficiency by introducing adaptive or opti-
mization algorithms. However, due to the nature of the on/off
controller, it is impossible to greatly enhance its performance.
Recently, the application of variable-speed components into the
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A/C-R system makes the development of more efficient controllers
possible. Particularly, as anti-idling technologies and electric vehi-
cles become more popular, the electrification technology of the
A/C-R system in the vehicle will separate the compressor from
the engine, which could make compressor actively change its
speed instead of passively following the engine’s speed. The cur-
rent controllers (other than the on/off one of the A/C-R system)
can be classified into three types [14]: classic feedback controller,
intelligent controller, and advanced controller. As the most popular
type of conventional feedback controllers, the PID controller has
been used for a long time. A relevant example is the superheat-
expansion valve and temperature-compressor control [15]. That
means the superheat will be controlled by the expansion valve,
and the temperature will be controlled by the compressor via
two separate PID controllers. Nevertheless, due to the nonlinear
and MIMO nature of an A/C-R system, it is difficult to find and tune
the controller parameters [16]. A strategy used to decouple the
controllers was developed in [17]. Still, this conventional PID
controller does not directly consider saving energy.

Artificial intelligent control approaches, such as artificial neural
network (ANN) control, fuzzy logic control, and the expert system,
are utilized to deal with nonlinearities or uncertainties in A/C-R
processes. ANN has a strong modeling capability for nonlinearities;
whereas, fuzzy logic can deal with uncertainties in a straightfor-
ward manner. Besides being used directly as controllers based on
their own formulation characteristics, ANN, fuzzy logic, etc., also
perform the roles of A/C-R models [18], computing methods, and
approximations of other control algorithms. In some cases,
these artificial intelligent control approaches are combined with
the A/C-R system control [14]. However, their limitations were
discussed in [19], which comprise over training, extrapolation,
network optimization, and the lack of optimal controls. These
drawbacks impede its development and application.

Advanced control generally includes robust control (e.g. Sliding
Model Control), adaptive control, optimal control (such as the
MPC), and so on. A second-order Sliding Mode Controller (SMC)
for the SISO refrigeration system was presented in [20], which reg-
ulates the refrigerant’s relative length in the evaporator by manip-
ulating the compressor speed. This controller can also effectively
alleviate chattering phenomenon, but it does not deal with power
consumption directly. A multivariable adaptive controller was pro-
posed in [21], which is able to identify different linear models for a
nonlinear system over the domain of operating conditions. There
are also other classes of nonlinearity compensation controls like
robust control [22], gain scheduling LQR [23,24] and optimizing
control [25].

In all of these advanced control methods, the MPC is a more suc-
cessful and promising control algorithm based on studies of model
identification, optimized algorithm, control structure analysis,
parameter tuning, and relevant stability and robustness. In A/C-R
system control, the MPC is gradually becoming a major control
method. The main value of the MPC is its ability to control multi-
variable systems under various constraints, especially slow
dynamic plants, in an optimal way. It can simultaneously control
more than one objective to achieve multi-objective and multivari-
able control; these variables include air temperature, relative
humidity, the decrease of operation cost (e.g. energy saving), the
improvement of air quality, and enhancement of steady-state per-
formance and robustness. A comprehensive literature review was
conducted in [16] on the theory and applications of controllers.
In particular, they focused on the MPC in the HVAC systems of
buildings, and they elaborated upon the factors that influence the
performance of the MPC such as controller structure, process type,
optimization algorithms, plant model, prediction horizon, control
horizon, constraints, and an objective function. A Takagi-Sugeno
fuzzy model was used to represent the highly nonlinear HVAC
system in temperature predictive control. In order to reduce the
computational effort of the non-convex optimization problem, a
combination of a branch-and-bound search technique was used
[26]. A hierarchical multiple MPC was proposed for the tempera-
ture control of the HVAC system based on a Takagi–Sugeno fuzzy
model [27]. Authors in [28] have applied a neuro-predictive con-
troller for the temperature control of automotive air conditioning
systems. However, the conclusions are tenuous without any sup-
porting experimental work. Literature [29] designed a MPC for a
multi-evaporator vapor compression cooling cycle. A decentralized
control structure was employed where the global MPC was to find
the set points of the required cooling as well as evaporator pres-
sures and local PI controllers were used for set-point tracking. By
properly controlling evaporator pressures and superheat, energy
efficiency can be improved. Authors in [30] used a neuro-fuzzy net-
work based offline optimization to approximate the input-output
relationship of a robust MPC, and validated it on an air-handling
unit for the temperature control to increase the computational effi-
ciency of a nonlinear robust MPC. An exergy-based objective func-
tion was incorporated into a nonlinear MPC to improve the
coefficient of performance (COP) of a vapor-compressor cycle oper-
ation [31]. Due to the nonlinear objective function, the ‘‘fmincon”
command in MATLAB that was used for the simulation and real-
time implementation is not feasible in practice due to its high com-
putational time. J. Ma et al. proposed an economic MPC to reduce
costs for building HVAC systems. In each time interval, a min-
max optimization technique is used and transferred to a linear pro-
gramming problem instead of solving the optimization problem
directly; this technique minimizes electricity costs and finds the
optimal input for the next step [32]. In [33], the author adopted
a complex nonlinear model of a vapor compressor system derived
by [23], linearized it and subsequently designed a MPC to control
the evaporator pressure and superheat by manipulating the com-
pressor speed and electronic expansion valve. The purpose of this
MPC was to improve the energy efficiency of the overall plant. In
order to show its performance in real situations, several scenarios
were simulated by using the linearized mode, but this was done
without any experimental validation. In addition, the effects of
model inaccuracy on the controller were not studied. An MPC
was designed for a commercial multi-zone refrigeration system
to minimize the total energy consumption, which employed a fast
convex quadratic programming solver to solve a sequential convex
optimization problem so as to handle the non-convexity of the
objective function. In order to limit the size of the optimization
problem in each step, a sample time of 15 min was chosen for pre-
dictions of the next 24 h [34]. A low-complexity MPC was devel-
oped for building cooling systems with thermal energy storage.
In order to improve the computational efficiency, a periodic mov-
ing window blocking strategy is utilized [35]. A time-varying peri-
odic robust invariant set discussed in [36] was used as the terminal
constraint to guarantee the robustness under the time-varying
uncertain cooling demand. The running time for each step was
about 20mins, which satisfies the sample time of 1 h chosen for
the MPC for prediction of the next 24 h. A learning-based MPC
was proposed in [37] to minimize the energy consumption of an
air conditioner while it maintains a comfortable temperature at
the same time. A statistical method and a mathematical model
for the temperature dynamics of a room were used to learn about
the time-varying heating load caused by occupants and equipment.
Based on the information learned from the heating load, this MPC
will determine the state (on/off) of the air conditioner. Ultimately,
it is still a two position controller for the air conditioner, but it is
more intelligent. The authors improved their study discussed in
[29]. A multi-evaporator vapor compression system was still the
research target and the global MPC was used to find the required
cooling and pressure set points for each zone. The local MPCs
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and PIDs for each evaporator were used to track these set points by
manipulating the valve position and evaporator fan speed. Energy
efficiency was guaranteed by choosing the proper pressures and
superheats instead of directly integrating the system’s inputs into
the objective functions of the MPC [38]. An adaptive MPC for a
reefer container was proposed in [39]. Model parameters, states
as well as the ambient temperature information for the next 24 h
were identified online. This long prediction period required a rela-
tively long time interval of 1 h to reduce the optimization problem
size at each time step so as to guarantee the real-time application.
Since the MPC is recalculated once every hour, the cooling pro-
vided by the refrigeration system could be incorrect for up to
one hour. This MPC is not suitable for reefer containers in delivery
trucks with small thermal inertia since such trucks unload their
goods regularly resulting in some extra heating load in the con-
tainer, which can ruin the quality of the goods. Due to the small
thermal inertia and subsequent fast thermal dynamics, the 1 h
time interval is too large to be used.

Compared to the aforementioned literature, the differences of
this paper are as follows: (1) from the application point of view,
this paper proposes a robust real-time MPC controller for automo-
tive A/C-R systems. Most of the MPC applications of A/C-R systems
in the existing literature are designed for buildings rather than for
vehicles because the compressor, the most energy-consuming
component in the A/C-R system, is directly connected to engine
in conventional vehicles. The fact that its speed cannot be freely
changed impedes the applications of advanced controllers. As
HEVs, EVs, and anti-idling techniques become more popular, the
electrification of the A/C-R systems and application of the MPC is
possible. In addition, buildings with large thermal inertia present
extremely slow temperature dynamics in which time intervals in
minutes or even hours [16,35,37–39] are used in the controller
loops. Vehicles with small passenger compartment, relatively poor
insulation conditions reflect a relatively fast thermal dynamics,
which calls for a smaller time interval, so controllers with real-
time implementation potential are required. Our work in this
paper introduces an MPC for A/C-R systems that satisfies the
requirements for vehicle applications. (2) Regarding the model
used for MPC development, neither the intelligent artificial [26–
28,30] nor the data-driven modeling method is utilized. In this
paper, the boundary-moving and lumped parameter method
[22,23] is adopted according to the physical structure and charac-
teristics of the plant. This method does not need any training work.
Using an online parameter identification algorithm, the proposed
model is sufficient to guarantee a better prediction accuracy
required by the MPC over the models used in the literature. In
addition, as opposed to complex models with more than fifteen
states developed in the literature [13,22,23], this paper uses a sim-
plified six-state control-oriented model with comparable accuracy.
This has been done by introducing the effects of fins and superheat
sections in the model [11]. (3) In terms of the controller itself, due
to the discrete nature of the constraints in many A/C-R systems
[25,40–42] a discrete MPC is proposed, which is rarely mentioned
in the current literature about A/C-R systems. Thanks to the simple
model, this controller is fast enough to be applied in real time. The
design process of this discrete MPC can serve as a framework for
other similar applications with several discrete points. Further-
more, the hybrid controllers combine the advantages of both the
MPC and the on/off controller to make more efficient controllers
under any heating load condition. Above all, concerning the robust-
ness of the proposed MPC, as is suggested by [43,44] a relatively
large terminal weight is experimentally tested and chosen for the
sake of robustness. The control performance is studied under both
large external disturbances and situations of model parameter
uncertainties. A 200-s heating load—up to 23% of the original heat-
ing load as the external disturbance is applied to the system to
evaluate the robustness of the controller. Frosting, a common phe-
nomenon in A/C-R systems, can lead to model inaccuracy, or even
violate the assumptions of the modeling. However, even under
such harsh situations, the control system shows an excellent per-
formance because of the robustness of the proposed controller;
whereas, the existing literature seldom shows the performance of
controllers during the frosting period of the A/C-R system.

3. Modeling of A/C-R systems

The development of advanced controllers is usually based on a
dynamic model, which should be simple enough for real-time
applications and reflect the main dynamics of the plant. In this sec-
tion, the dominant equations of the four main components of the
A/C-R system are provided and explained, for more detailed infor-
mation please the previous work [11].

3.1. Expansion valve

The expansion valve is assumed to be isenthalpic i.e. the
enthalpy at the inlet of the valve is identical to that at the outlet.
No matter which kind of expansion valve, the refrigerant mass flow
rate _mv through the expansion valve is modeled by:

_mv ¼ CvAv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qvðPc � PeÞ

q
ð1Þ

For different types of expansion valves, the discharge coefficient
Cv and valve opening area Av have different correlations obtained
by experimental data [45,46] Pc and Pe are the pressure of con-
denser and evaporator, respectively.

3.2. Compressor model

The dynamics of the compressor can be demonstrated by:

_mcomp ¼ NcompVdgvolqref ðPeÞ ð2Þ
hoc ¼ gaðhisðPe; PcÞ � hicðPeÞÞ þ hicðPeÞ ð3Þ
Eq. (2) depicts the refrigerant mass flow rate throughout the com-
pressor with respect to the compressor speed, and Eq. (3) shows
the enthalpy change of the refrigerant after going through the
compressor.

3.3. Evaporator

Two common types of heat exchangers are used in the A/C-R
system: the microchannel type and the fin-tube type [47]. The
modeling method proposed is suitable for any type. More impor-
tantly, the modeling method takes the fins’ effect into considera-
tion and lumps it into two equivalent parameters so that the
model is simple but accurate. The simplified nonlinear dynamic
model of the evaporator can be written as:

hlgeqleð1� �ceÞAe
dle
dt

¼ _mvðhge � hieÞ � aiepDieleðTwfe � TreÞ ð4Þ

AeLe
dqge

dPe

dPe

dt
¼ _mv

hie � hle

hlge
� _mcomp þ aiepDieleðTwfe � TreÞ

hlge
ð5Þ

ðCpmÞwfe

dTwfe

dt
¼ aoeAoeðTae � TwfeÞ � aiepDieleðTwfe � TreÞ

� aieshpDieðLe � leÞðTwfe � TreÞ ð6Þ
where the three states are the length le of the two-phase section, the
pressure Pe of the evaporator, and equivalent temperature Twfe of
tube wall & fins. Eq. (4) simulates the energy transfer from
the refrigerant to the heat exchanger tube wall & fins of the
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two-phase section [24]. Eq. (5) denotes the vapor refrigerant change
rate throughout the evaporator tube. Eq. (6) reflects the heat con-
duction of the entire heat transfer process. The last term on the
right-hand side represents the heat conduction throughout the
superheat section, which is added to improve model accuracy and
distinguish it from the model proposed in [23,24]. aoe is regulated
by the evaporator fan speed Nevap [22].

3.4. Condenser

As is known, the total mass mtotal of the refrigerant inside the
cycle is constant without considering any leakage. The mass of
the refrigerant outside of the two heat exchangers is defined as
mpipe. Thus, the difference between these two masses is the mass
inside evaporator and condenser, which can be shown by:

mtotal �mpipe ¼ Ae qleleð1� �ceÞ þ qgele�ce þ qsheðLe � leÞ
h i

þ Ac qlc lcð1� �ccÞ þ qgclc�cc þ qshcðLc � lcÞ
h i

ð7Þ

With the same modeling method, the condenser dynamics can
be represented by the following two-state model by considering
Eq. (7),

AcLc
dqgc

dPc

dPc

dt
¼ _mcomp � aicpDiclcðTrc � TwfcÞ

hlgc
ð8Þ

ðCpmÞwfc

dTwfc

dt
¼ aocðNcondÞAocðTac � TwfcÞ � aicpDiclcðTwfc

� TrcÞ � aicshpDicðLc � lcÞ Twfc � ðTrc þ TicÞ=2
� � ð9Þ
Fig. 2. Schematic of the experimental system.
3.5. Cargo

The inside temperature of the cargo is one of the control objec-
tives, whose dynamics can be shown by the following equation:

dTc arg o

dt
¼

_Qinconv þ _Qinf þ _Qdoor � _Qvcc

ðMCÞair
ð10Þ

where _Qinconv represents the convective heat transfer from the inte-

rior surface; _Qinf and _Qdoor are the load due to infiltration and open-

ing the door respectively, and _Qvcc is the cooling capacity produced
by the A/C-R system to balance the heating load from outside

[48,49]. The first two loads will be treated together ( _Qout), and they
can be identified by test data obtained from the previous step. _Qdoor

is used as an external disturbance and added to the chamber.
By considering the boundary conditions of each component and

integrating the cargo into the whole cycle, the entire model will
become a six-state dynamic model. In this model, the air temper-
ature Tamb at the inlet of the condenser is considered to be the
ambient air temperature, and it is a measured value. The system
inputs are compressor speed Ncomp as well as the frequencies
(Nevap and Ncond) of two variable frequency drives (VFDs) used to
manipulate the speed of the evaporator and condenser fans. The
frequencies are proportional to the two fan speeds. The six states
Pe; Pc; le; Twfe; Twfc; Tc arg o
� �

are: pressures of the evaporator and the
condenser, the two-phase section lengths, equivalent tube wall &
fins temperatures of two heat exchangers, and the temperature
of the evaporator-side temperature, respectively. The output is
the air temperature Tc arg o of the cargo.

4. Experimental system

In order to validate the model and verify the performance of
these new controllers, an automotive A/C-R system is built. From
the schematic of the experimental system in Fig. 2, it can be seen
that two independent environmental chambers are connected to
the evaporator and condenser units by pipes. The evaporator-side
chamber acts as the cargo and its temperature will be a controlled
parameter while the temperature at the inlet of the condenser can
be controlled and used as operating conditions when the experi-
ments are conducted.

The experimental setup is shown in Fig. 3, where the four main
components of the whole system and the two chambers are
labeled. Fig. 4 shows one of the environmental chambers. The
Micro Motion 2400S transmitter with 0.5% accuracy from Emerson
Electric Co. is utilized to log the refrigerant mass flow rate, and it is
located between the condenser and the thermostatic expansion
valve given in Fig. 5. The T-type thermocouples and pressure trans-
ducers model PX309manufactured by OMEGAwith 0.25% accuracy
shown in Fig. 6 are installed at four locations of the whole system
to measure both the high and low temperatures/pressures of the
refrigerant. Fig. 7 describes T-type thermocouples and the wind
sensor model MD0550 from Modern Device, which are installed
at eight locations on the evaporator and condenser airstreams.
Also, The Data Acquisition (DAQ) system is used to collect data
from the thermocouples, pressure transducers, DC power supply,
and flow meters, and this data is sent to a computer. LABVIEW is
employed to obtain all the measured data from the equipment
and to save it in an EXCEL file.

The two fans of the evaporator and condenser are controlled by
two VFDs such that the speed could be represented by frequency.
While the compressor only has three different speeds, an NI relay
module (NI9485) is used to switch between the three discrete
speeds.
5. Controller development and implementation

5.1. On/off controller

The on/off controller is most commonly used in vapor compres-
sion units because of its simplicity. However, it has many draw-
backs as mentioned in the previous sections. Therefore, the on/
off controller developed in this section serves simply as a basis of
comparison for new controllers. The on/off control strategy is actu-
ally a simple hysteresis where the hysteresis band is used to reduce
the compressor’s frequent switching. When the system is on, the
compressor is running at maximum speed. The controller is driven
by the error signal between the measured temperature and the
temperature set point in the cargo space [49].
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Fig. 5. Refrigerant mass flow meter.

Fig. 6. Thermocouple & pressure transducer.
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The controller was built in MATLAB/SIMULINK and LABVIEW for
simulation and experiment, respectively. Due to the slow dynamics
of the A/C-R system, the control & simulation loop is employed in
the control design & simulation module instead of the real-time
module; whereas, the simulation time, step size, and timing source
are set up to guarantee that the controllers run in real time.
5.2. MPC

As an optimal control method, the MPC originated in the chem-
istry industry’s control techniques. It is characterized by its slow
dynamics, which provides enough time for optimization calcula-
tions [50]. As is known, the A/C-R system is a highly nonlinear
MIMO system with slow dynamics making it suitable for MPC
application. In general, three parts are included in an MPC: a pre-
dictive model that aims to predict future behavior of the process,
a receding horizon optimization algorithm that will solve an expli-
cit optimization problem formulated into several future sampling



Fig. 7. Air temperature & velocity sensors.

Y. Huang et al. / Applied Energy 184 (2016) 605–618 611
periods, and feedback correction to keep the controlled variables at
the set points and enhance the robustness of the A/C-R control sys-
tem [51].

Using a highly complex nonlinear model for the development of
a model predictive controller, the computational efficiency will be
extremely low, so its real-time implementation will become
expensive or even unrealistic for industrial applications. To solve
this problem, a linear MPC will be developed in this paper. After
linearizing and discretizing the nonlinear model [52], a finite hori-
zon optimization problem [53] is formulated at each time interval.
The objective function is shown below,

Jðx0;u0Þ¼ eðNÞTPeðNÞþ
XN�1

k¼0

eðkÞTQeðkÞþuðkÞTRuðkÞþDuðkÞTSDuðkÞ
h i

s:t:

xmin 6 xðkÞ6 xmax; k¼0; . . .N�1

umin 6uðkÞ6umax; k¼0; . . .N�1

Dumin 6DuðkÞ6Dumax; k¼0; . . .N�1

ð11Þ
where e is the tracking error of the temperature; the first term on
the right-hand side is the terminal cost; the second term is stage
cost; the third term represents control effort cost and the last term
is control input rate costs. P;Q ;R; and S are weights to balance each
term. The objective function is transferred into a quadratic form
with respect to the increment of control inputs. As the prediction
horizon length is N, the deviation trajectory of future states will
be obtained by the discrete model:
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Then, the deviation of the future outputs can be rewritten into a

compact form by:
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The convex quadratic objective function only with respect to
the increment of inputs will be obtained by inserting Eq. (13) into
the original objective function shown in Eq. (11) and neglecting the
constant term:

Jðx0;u0Þ¼1
2
DUTHDUþDUTg

H¼2 CDXSDU
� 	T

Q CDXSDU
� 	

þRþS;g¼2 CDxSDu
� 	T

Q CDxSDu�Yref

� 	

s:t:

DUPmax DUminðUÞ;DUminðDUÞ;DUminðXÞ
� �

DU6min DUmaxðUÞ;DUmax DU
� �

;DUmaxðXÞ
� �

ð14Þ
where the Hessian matrix ðHÞ is symmetric and positive or semi-
positive definite and g is the gradient vector. Q ;R; S and Yref should
be reformulated according to the prediction horizon length N based
on Q ;R; S and Yref . The updated constraints of the increment of the
control can be found by the reformulation of Eq. (12) and the con-
straints shown in Eq. (11). For example, the constraints of the states
can be applied to DU as DUmaxðXÞ by Eq. (12). Since the optimal
result is the small variation DU, the real optimal U can be obtained
by adding the initial input U0. The first element of the optimal solu-
tion will be applied to the real system.

This linear MPC is implemented into MATLAB/SIMULINK and
LabVIEW for simulation and experiment, respectively. The detailed
structure of the MPC in the Control & Simulation Loop in LABVIEW
is depicted in Fig. 8. First, the thermodynamic properties, such as
density, enthalpy, and entropy, of the refrigerant under the current
working conditions are obtained online by feeding the fresh mea-
surements into lookup tables followed by parameter and state
identification, where some unknown parameters and states are
identified online. Then, all the known information is sent to the
MPC algorithm, whose output is a quadratic problem (QP), shown
in Eq. (14). A QP open source solver [54], which is originally writ-
ten in C, is also integrated into the Control & Simulation Loop in
LABVIEW and solves the QP at each time interval. The outputs will
be delivered to the evaporator and condenser fans as well as the
compressor pump via some other NI DAQs control modules to reg-
ulate their speeds. If the three control inputs are continuously
varying in their ranges, the MPC is the continuous one. Due to
the discrete constraint of the compressor speed (i.e. low, medium
and high speed), the discrete MPC is designed, where three contin-
uous MPC are employed and solved simultaneously at each time
interval. Each of these works at one compressor speed to find the
optimum solutions for the other two inputs and the cost values.
Then, the three cost values are compared to determine the mini-
mum value, and their three corresponding inputs are used as the
optimal solutions.
6. Controller tuning and performance comparison

In this section, the controller’s performance is compared in
terms of both controlled temperature performance and energy
consumption. To study the A/C-R energy consumption at different
ambient temperatures, the condenser is connected to an environ-
mental chamber whose temperature is controlled. Three different
ambient temperatures ½20 �C;25 �C;30 �C� are chosen for the



NI DAQ NI DAQ

Ini�aliza�on

Lookup tables

Parameter & state 
iden�fica�on

Lineriza�on

Cost func�on
reformula�on

QP solver

discre�za�on

MPC_med
Ini�aliza�on

Lookup tables

Parameter & state 
iden�fica�on

Lineriza�on

Cost func�on
reformula�on

QP solver

discre�za�on

MPC_low

J_opt=min (J_low, J_med, J_high)
U_opt=arg(J_opt)

Ini�aliza�on

Lookup tables

Parameter & state 
iden�fica�on

Lineriza�on

Cost func�on
reformula�on

QP solver

discre�za�on

MPC_high

VFDs Sensors

Control & simula�on loop in Labview

Discrete MPC

Experimental system

Fig. 8. Discrete MPC structure in LabVIEW.

612 Y. Huang et al. / Applied Energy 184 (2016) 605–618
experiments. The cargo used in the experiments is a 2 m3 wooden
chamber shown in Fig. 4. There are 15 thermocouples to measure
the temperature at different locations. For the experiments, an
average temperature of 7 thermocouples closer to the air inlet of
the condenser was used as the controlled temperature. The hys-
teresis band is an important parameter in the on/off controller,
which should be determined before running the simulation. It
decides the temperature oscillation and switching frequency of
the whole cycle and subsequently, the wear condition of the com-
pressor. Therefore, for the sake of a trade-off between the two
aspects, ±1 �C is chosen as the band by the preliminary experiment
study. Under different ambient temperature conditions, the A/C-R
system runs at maximum capacity until the chamber temperature
stabilizes. Three different temperatures ½16 �C;17 �C;18 �C� are cho-
sen as the temperature set points of the air inside the cargo. Fur-
thermore, the on/off threshold should be determined before
testing the on/off controller. If the threshold is too large, the tem-
perature variation amplitude is too large. Otherwise, the system
will be switched on and off too frequently. After these two aspects
are taken into account and some preliminary tests are performed, a
±1 �C threshold is chosen. Table 1 shows the operating conditions
and system constraints for both experiment and simulation.

6.1. On/off controller

For the controller performance analysis, several experiments in
different scenarios are performed. In order to demonstrate the
Table 1
Operating conditions and constraints of inputs and states.

Tambð�CÞ Tc arg o initð�CÞ Tsetpointð�CÞ _QdoorðkWÞ Nev

25 22:5 16 0:15 [0–
performance of the controller, the test results under the operating
condition mentioned in Table 1 are provided.

During the tests, an external disturbance of approximately 23%
of the original heating load (the 200-s disturbed region shown in
Fig. 9) was applied to the chamber to simulate the disturbance
caused by an opening door. Figs. 9 and 10 refer to the state and
input responses of the system, respectively.

6.2. Discrete MPC

In this section, the controller parameters are briefly discussed
and chosen. As the sample time Ts decreases, the ability to reject
disturbance improves, but the computational effort increases dra-
matically to guarantee the real-time application. Thus, the best
choice is a trade-off between robustness and computational effort
based on the dynamics of the system [33,55]. The prediction hori-
zon is related to the size of the quadratic optimization problem
(the computational effort) and the accuracy of the prediction. A lar-
ger value leads to a better suboptimal solution with much more
computational effort and increases the prediction’s uncertainties.
During the tuning process, N starts with a small value until further
increase cannot bring obvious impact on the controller’s perfor-
mance. From Table 1, the scale factors of the three inputs and
the output can be set as 2000, 40, 40 and 10, respectively. In order
to ensure the value of each term in the objective function in the
same scale, a larger Q is chosen. For the weight matrix R of the
control effort, a larger weight is selected for the compressor
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MPC parameter.
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Fig. 11. Temperature performance of discrete MPC.
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speed—the most energy-consuming component; whereas, the
remaining values are zeros. Usually, the larger input rate weights
of S lead to more conservative control moves and produce a more
robust performance [55]. By properly choosing a terminal weight
from the Riccati equation, a finite-horizon MPC equivalent to an
infinite-horizon linear quadratic regulator can be designed to
achieve the close-loop stability of the plant [56,57]. If the applica-
tions involve constraints, it is difficult to find such a time-varying
terminal weight, and it usually needs a terminal constraint to force
the plant states into a defined region at the end of horizon [55].
However, as per the tuning guideline suggested in [43], a suffi-
ciently large value of the terminal weight can lead to a better
closed-loop performance in most cases. The controller’s parame-
ters are presented in Table 2.

Figs. 11 and 12 show that the discrete MPC performs better than
the on/off controller. For instance, the MPC controller can keep the
temperature of the cargo in a smaller range, compared to ±1 �C of
the on/off controller. With the external disturbances up to 23% of
the original heating load, the controller will optimally increase
the cold air flow rate to balance the extra heating using the evap-
orator fan to maintain the closed-loop dynamics.

As seen thus far, the MPC has better control performance than
the conventional on/off controller because it is able to keep the
temperature around its set point with smaller oscillations. In addi-
tion, energy consumption serves as the most crucial criterion to
show the advantages of the MPC controller. In Table 3, the energy
consumption in the 1200 s under the same conditions for each
controller is given. As expected, the discrete MPC consumes less
energy than the on/off controller under the examined scenario.

As mentioned above, a large disturbance is added to the plant
and the results show good performance of the proposed controller.
As a common phenomenon of the A/C-R system, the frosting prob-
lem always exists [58]. When frost appears, it can cause model
inaccuracies. For example, the refrigerant mass flow rate through
the valve will decrease when the system is frosting, and accord-
ingly, so do many other parameters such as pressures, temperature
and superheat. In order to further demonstrate the robustness of
the developed controller, the experimental results during the ther-
mostatic expansion valve (TXV) frosting under two cases are pre-
sented. Figs. 13 and 14 show the TXV with and without frost.

In the first scenario, the ambient temperature is 25 �C and the
temperature set point is 18 �C; whereas, the ambient temperature
is set at 30 �C with 16 �C set point in the second scenario. The tem-
perature responses and system inputs are demonstrated in
Figs. 15–18, respectively. It can be seen from the figures that the
closed-loop performance of this proposed MPC is still satisfactory
under both large external disturbances and frosting conditions.



Table 3
Energy consumption of two controllers.

Energy consumption for 1200s (kW h) Improvement

On/off 0.2063 Basis
Discrete MPC 0.1902 7.8%

Fig. 13. TXV without frost.

Fig. 14. TXV with frost.
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7. Case study

In this last section, the controller’s performance and energy-
saving benefits are studied under one fixed heating load condition,
so in this section, the performance of both controllers are simu-
lated under a time-varying heating load condition. Table 4 shows
the energy consumptions of the on/off controller and the discrete
MPC under different heating loads. It can be seen that under higher
heating load (above 0.5 kW) conditions, the discrete MPC con-
sumes less energy than the on/off controller while for lower heat-
ing loads, the on/off controller is more efficient. Thus, it cannot be
concluded that the discrete MPC is better than the on/off con-
troller, rather than the discrete MPC could alleviate temperature
fluctuations. That is why the other controllers appear in the follow-
ing sections.
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Table 4
Energy consumptions under different heating load conditions.

Heating load (kW) Energy consumption for 1200s (kW h)

On/off Discrete MPC

0.8 0.2311 0.2119
0.7 0.2162 0.1955
0.6 0.1895 0.1789
0.5 0.1671 0.1657
0.4 0.1451 0.1624
0.3 0.1179 0.1523
0.2 0.0925 0.1343
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Fig. 20. System inputs of on/off controller.
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7.1. Hybrid controllers

By studying the energy consumptions under different heating
load scenarios in Table 4, a direct hybrid controller could be intu-
itively designed by combining the discrete MPC and the on/off con-
troller along with an identifier that could estimate the current
heating load. The criterion for activating the discrete MPC is when
the heating load is higher than 0.5 kW, and the on/off controller is
activated in all other scenarios. Based on the experimental and
simulated data, it is known that the cooling capacity produced by
the system using the minimum compressor speed can balance
the heating load under 0.5 kW. In addition, the compressor is the
most energy-consuming component in A/C-R system. As a result,
the minimum compressor speed and maximum evaporator and
condenser fan speeds are used in this on/off controller.

Even with these parameters, during a low heating load period,
the on/off controller will switch the system frequently. In order
to alleviate the effects of this phenomenon, an adaptive hybrid
controller is given. The main idea is that the system starts working
by using the discrete MPC until the controlled temperature settles
down at its set point. Then, the MPC is still used as long as the cur-
rent heating load is over 0.5 kW. Otherwise, the on/off controller
will be used. In addition, the speed of the evaporator fan will be
updated by:

Nevap ¼ Nevap�mpc þ kevap Tevap�cham � Tsetpoint
� � ð15Þ

where Nevap�mpc , is the speed found by the discrete MPC at the
switching point; kevap, is a proportional coefficient and related to
the switching frequency of the system when using on/off controller.
When kevap is zero, this hybrid controller will be the discrete MPC.
Otherwise, when it is high enough, it will become the direct hybrid
controller.

7.2. Continuous MPC

In some recent applications of the A/C-R system, the continuous
variable components instead of components with several different
speeds are employed. In order to study the potential of the MPC in
these cases, a continuous MPC is designed based on the same
model and procedures shown above. In this controller, the input
of the compressor speed can continuously change from zero to
its maximum speed [48].

7.3. Controllers comparison

In order to compare the controllers discussed above, a heating
load cycle shown in Fig. 19 is applied to the system for the simula-
tions. This cycle is used to represent the heating load during a day
in 1200 s. As is well-known, the temperature at noon is higher than
that in the morning and evening; as such, the heating load applied
to the chamber reflects daily temperature variances. Although the
heating load changes in a much lower frequency in the real
situation, this cycle could also examine the robustness of the
controllers.

Fig. 20 shows the system inputs of the on/off controller. The
system stays on for a longer period of time under the large heating
load condition and vice versa. The controlled temperature behavior
and total energy consumption are provided in Fig. 21. The energy
consumption will be also used as a basis of comparison for the fol-
lowing controllers.

The system inputs, temperature behavior and energy consump-
tion for the discrete MPC are provided by Figs. 22 and 23.

The results of the direct hybrid controller are shown in Figs. 24
and 25. It can be seen that the on/off controller and the discrete
MPC are alternated when the heating load is 0.5 kW.

By choosing 1 as the value of kevap, the results of the adaptive
hybrid controller are given in Figs. 26 and 27. These figures show
that in comparison to the direct hybrid controller, the lower activa-
tion frequency of the system is obtained at the expense of energy
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Fig. 23. Temperature performance and energy consumption.
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Fig. 25. Temperature performance and energy consumption.
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Fig. 26. System inputs of adaptive hybrid controller.
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consumption. As a result, a trade-off performance between energy
consumption and switching frequency of the system can be
obtained by using the desired value of kevap.

The controlled temperature performance and energy consump-
tion of the continuous MPC are demonstrated as follows. In Fig. 28,
the compressor speed can be manipulated freely according to the
changing heating load instead of alternating between several dis-
crete values. In Fig. 29 the temperature response and energy con-
sumption of the continuous MPC are shown.

All the above simulations are done under the same working
conditions as given in Table 1 but with the new heating load cycle
shown in Fig. 19. The total energy consumption and improvements
of the proposed controllers with respect to the conventional on/off
controller are listed in Table 5.
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Table 5
Energy consumptions of different controllers.

Controllers Energy consumption 1200s (kW h) Improvement (%)

On/off 0.1675 Basis
Discrete MPC 0.1670 0.24
Direct hybrid 0.1420 15.17
Adaptive hybrid 0.1602 4.30
Continuous MPC 0.1286 23.18
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8. Discussion and conclusions

The goal of this study was to develop an advanced controller for
automotive A/C-R systems, which can not only save energy but also
enhance performance.

In this study, a control-based model was proposed and vali-
dated by an experimental A/C-R system used in trucks. Then, an
on/off controller was designed as a benchmark to demonstrate
the improvement of other controllers. Due to the existence of the
discrete input of the experimental system, a discrete MPC was
designed. The experimental results showed that the model used
for controller development is accurate and the discrete MPC not
only consumes less energy but also has better temperature behav-
ior than the on/off controller under the examined condition. The
robustness of the proposed MPC was also evaluated with the
appearance of large external disturbances and the conditions of
the plant frosting period. All the test results showed that the
MPC is robust. Then, the controller was tested under the time-
varying heating load condition. The results also indicated that
the discrete MPC uses less energy only under higher heating load
conditions. That is why the two hybrid controllers were studied
and developed. The direct hybrid combines the energy-saving
advantage of the discrete MPC and the on/off controller under all
conditions; whereas, the adaptive hybrid controller can reach a
balance between energy consumption and component wear. These
hybrid controllers are two promising options for the A/C-R systems
with discrete inputs according to the requirements. The continu-
ous MPC was also examined, which is the optimal controller for
the A/C-R systems with continuously varying components because
it can save up to 23% energy with a satisfactory performance.

In addition, the simulation and experimental analysis demon-
strated that the proposed MPCs can be used in real time, and it
can also achieve the goals of saving energy and improving perfor-
mance. Therefore, the developing process and modeling method of
the MPC can be applied to other complex plants. Future studies
will focus on integrating the power consumption model of the
whole system into the objective function instead of only control
efforts, designing a fully controllable experimental system to test
the proposed continuous MPC controller, and implementing the
controller into a real vehicle to test its performance in practice.
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